PRO³ TOP MOUNT PACKAGED REFRIGERATION SYSTEM

Installation and Operations Manual
For Outdoor Applications
TABLE OF CONTENTS

3 Owner’s Manual Installation Instructions
- 3 Dimensional Diagrams
- 4 Space and Locations Requirements
- 4 Recommended Unit Placement
- 5 Rigging
- 5 Mounting
- 5 Inspection
- 5 General Safety Information
- 5 Control Factory Default Settings
- 6 Standard Installation Procedure
- 7 Outdoor Unit Installation Instructions

8 Freezers
- 8 Service Information
- 8 Maintenance
- 8 Sequence of Operation
- 8 Freezer System Pre-Setpoints
- 8 Electric Defrost Sequence of Operation
- 8 Programming Electric Defrost Controls

9 Controllers
- 9 Carel Electronic Controller

20 Service Information
- 20 System Troubleshooting Chart
- 21 Replacement Parts

22 Wiring Information
- 22 Electrical Wiring Diagrams

28 Warranty Information
FIGURE A
P2 Cabinet Dimensions Without Weather Hood

25"X25" PANEL OPENING REQUIRED FOR EVAPORATOR SECTION OF “P2” CABINET SIZES.
* - 21.5" (54.61 cm) ON OUTDOOR MODELS WITH WEATHER HOOD

FIGURE B
P3 Cabinet Without Weather Hood

25"X38.5" PANEL OPENING REQUIRED FOR EVAPORATOR SECTION OF “P3” CABINET SIZES.
* - 23.5" (59.69 cm) ON OUTDOOR MODELS WITH WEATHER HOOD

FIGURE C
P2 Cabinet With Weather Hood

FIGURE D
P3 Cabinet With Weather Hood

AGENCY LISTINGS

AIR FLOW
UOM: inches

ELECTRICAL CONNECTION

5/8 CONDENSATE DRAIN OUTLET
RECOMMENDED UNIT PLACEMENT FOR OUTDOOR MODELS

Some general rules for the evaporator section placement which must be followed are:

1. Ensure that the structural integrity of the box can withstand the weight of the top mounted equipment.
2. The air pattern must cover the entire room.
3. NEVER locate the evaporator section over doors.
4. Location of aisles, racks, etc. must be known.
5. Never remove or unlock any panel cam-locks to install top mounted equipment.

The size and shape of the storage will generally determine the type and number of units to be used and their location.

NOTE: Always avoid placement of units directly above doors and door openings.
Rigging
Rigging holes are provided on all models. Caution should be exercised when moving these units. To prevent damage to the unit housing during rigging, cables or chains used must be held apart by spacer bars. The mounting platform or base should be level and located so as to permit free access of supply air. The unit weather hood may be removed for the rigging process. The condensing unit cover (wrapper) should be left in place.

Access Requirements
Provide adequate space at the compressor end of the unit for servicing. Provide two (2) feet of space above unit for service.

Inspection
1. Each shipment should be carefully checked against the bill of lading.
2. The shipping receipt should not be signed until all items listed on the bill of lading have been accounted for.
3. Check packaging for signs of damage.
4. Any shortage or damages should be immediately reported to the delivering carrier.
5. Damaged material becomes the delivering carrier’s responsibility, and should not be returned to the manufacturer unless prior approval is given to do so.
6. When unpacking the system, care should be taken to prevent damage.
7. Avoid removing the shipping base until the unit has been moved to the final destination.
8. Complete warranty return card for each unit and mail to Heatcraft Refrigeration Products.

Changing the EZY
1. Press Set button and hold in until the display flashes “PS”.
2. Press the Set Button and the display will change to “0” and will begin to flash.
3. Press the up button until “22” is displayed.
4. Press the Set button.
5. Press the down button 2 times. “EZY” will be displayed.
6. Press the Set button.
7. Select the proper number for the model needed by pressing the up or down key.
 • 1 - L Low temperature model
 • 2 - M Med temperature model - Electric Defrost
 • 3 - M Med temperature model - Air Defrost
8. Press Set and wait for unit to return out of programming mode.
9. Disconnect power
10. Press the Set Button while turning unit On
11. “CE” should display to verify programming display

Table 1: Control Factory Default Settings

<table>
<thead>
<tr>
<th>Models</th>
<th>Temperature Set Points</th>
<th>Defrost Start Times</th>
<th>Defrost Duration (Maximum)</th>
<th>Drip Time</th>
<th>Fan Delay</th>
<th>Defrost Termination Set Point</th>
<th>EZY Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>M - Cooler Models</td>
<td>38°F</td>
<td>4 / day</td>
<td>40 min.</td>
<td>–</td>
<td>–</td>
<td>40°F</td>
<td>3</td>
</tr>
<tr>
<td>Air Defrost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M - Cooler Models</td>
<td>35°F</td>
<td>4 / day</td>
<td>40 min.</td>
<td>2 min.</td>
<td>1 min.</td>
<td>65°F</td>
<td>2</td>
</tr>
<tr>
<td>Electric Defrost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L - Freezer Models</td>
<td>-10°F</td>
<td>4 / day</td>
<td>40 min.</td>
<td>2 min.</td>
<td>1 min.</td>
<td>65°F</td>
<td>1</td>
</tr>
<tr>
<td>Electric Defrost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE OUTDOOR PRO³ COMES STANDARD WITH THE FOLLOWING ADDITIONAL COMPONENTS:

- Crankcase Heater
- Drain Line Heater
- Weather Hood
- Fan Cycling (Pressure on 1 fan models, Pressure and Ambient on 2 fan models).

STANDARD INSTALLATION PROCEDURE (FOR OUTDOOR USE)

1. Provide a 25" X 25" (medium cabinet) or 25" X 38.5" (large cabinet) opening in the roof of walk-in cooler or as specified by the panel manufacturer.

2. Apply silicone caulk around the perimeter of roof opening. Place the curb on roof of cooler. It is recommended that the curb be fastened to the roof panels using non-conductive bolts or insulating the bolt heads. Bolt heads should be countersunk or low profile to prevent contact with the PRO³ system. (See Figure 1, page 7) Check the top of the curb with a level. PRO³ units require a surface that is within 1° of level or better and no more than a 5/8” drop per 3 feet (17mm drop per meter).

3. Install the membrane onto the roof of the box and over the curb. Fasten to roof per panel manufacturer’s instructions. The membrane material should be slit over the evaporator grill opening the flaps allowed to drape into the hole 2" - 4". (See Figure 2, page 7) Care should be taken during the membrane installation to prevent bunching or folding which could affect the gasket-to-curb sealing or trap rainwater adjacent to the curb.

4. Remove the weather hood from the PRO³ system. The compressor compartment cover(s) should be left in place during lifting/rigging.

5. Place PRO³ system onto curbing and center over opening in roof box. (See Figure 3, page 7)

6. It is recommended that the PRO³ system be secured to the curb with wood screws. Seal the screw heads as necessary to prevent moisture from entering beneath the membrane. Additional caulk may be applied around the perimeter of the evaporator box gasket. The compressor compartment should not be caulked.

7. Install trim pieces (if used) around the ceiling opening in cooler.

8. Add water to the condensate drain line to maintain liquid seal in the P-trap.

9. Remove compressor compartment cover for access to electrical box.

10. Connect power wiring in accordance with all applicable building and electrical codes.

11. Reinstall condensing unit cover(s).

12. Reinstall the protective weather hood. (See Figure 4, page 7)

13. Apply power and check for proper operation.

DRAIN LINE
A condensate drain outlet is located on the side of the compressor compartment. Field piping may be connected to the outlet provided it is adequately sloped and heated for freezing weather conditions. There is a drain line “P” trap located in the outdoor unit.

GENERAL SAFETY INFORMATION:

- Do NOT lift the PRO³ by the weather hood.
- This product is not designed to be transported while installed or operating
Example Outdoor Curb Installation
(Curb supplied by others)

Figure 1. Curb placed on roof of walk-in cooler.

Figure 2. Roof membrane placed over curb.

Figure 3. Outdoor unit placed on roof of walk-in color.
(see rigging instructions)

Figure 4. Weather hood installed after electrical service connection.

Note: Do not caulk around the base of compressor compartment.

This area of curb may be solid.
PRO³ SERVICE INFORMATION
All PRO³ units are designed for maximum durability, reliability and simplicity. PRO³ comes to you ready for operation, fully charged and with all controls preset at the factory. The following information is provided as an aid in the event that service is required.

MAINTENANCE
The evaporator section of a PRO³ system should be checked at least once for proper defrosting because the amount and pattern of frosting can vary greatly. The frost build-up is dependent on the temperature of the room, the type of product being stored, how often new product is brought into the room and percentage of time the door to the room is open. It may be necessary to periodically change the number of defrost cycles or adjust the duration of defrost.

PRO³ SYSTEM STANDARD MAINTENANCE GUIDELINES
After first year of operation and under normal usage, maintenance should cover the following items at least once every six months:

1. Check and tighten **ALL** electrical connections.
2. Check all wiring and insulators.
3. Check contactors for proper operation and for worn contact points.
4. Check all fan motors. Tighten motor mount bolts/ nuts and tighten fan set screws.
5. Clean the condenser coil surface.
6. Check the operation of the control system. Make certain all safety controls are operating properly.
7. Check that all defrost controls are functioning properly.
8. Clean the evaporator coil surface.
9. Clean the drain pan and check the drain pan and drain line for proper drainage.

REFRIGERATION SEQUENCE OF OPERATION
1. Power is provided to the temperature control, compressor contactor and cooler evaporator fans.
2. The temperature controller closes and energizes the compressor contactor, starting the compressor, evaporator and condenser fan(s).
3. When the system reaches the desired box temperature, the temperature control will de-energize the compressor contactor. Evaporator fans will continue to operate at this point.
4. When the fixture temperature rises above the set point and minimum off-time has elapsed, the temperature control will close and re-energize the compressor contactor.

ELECTRIC DEFROST SEQUENCE OF OPERATION FOR FREEZERS
1. During normal operation, at the preset time intervals, the temperature/defrost control will de-energize the compressor contactor and evaporator fans and energize the defrost heaters. These functions are controlled through relays on the controller.
2. When the coil has defrosted fully and has reached the preset coil temperature (as sensed by the coil temperature sensor) the defrost heater de-energizes and the fan delay and drip sequences begin.
3. The temperature/defrost control energizes the compressor contactor, starting the compressor and condenser fan(s).
4. Freezer evaporator fans will be energized by the temperature/defrost control when the coil temperature reaches 35°F or fan delay time has elapsed.
REFRIGERATION/DEFROST SEQUENCE OF OPERATION

The sequence of operation varies depending on the model that has been installed. The three basic models are Low Temperature, Medium Temperature, and High Temperature models. The particular model can be determined by the seventh digit of the model number. See Tables 1-3 for details and settings.

Control of the refrigeration and defrost system is provided by the Carel controller along with a space (box) temperature sensor and a coil (defrost) temperature sensor. The controller will control on and off switching for the compressor, condenser fan motor(s) (cycles with the compressor), evaporator fan motor(s) and electric defrost heaters for electric defrost.

The Carel controller is pre-programmed for all three applications. This is done with the use of the parameter list. The parameter list can be changed by entering the Carel Controller and changing the “EZY” setting. See page 15.

TABLE 2: OUTDOOR MODELS | LOW TEMPERATURE MODELS | EZY SETTING=1
SET POINT IS -10° F

These models are intended for freezer applications and require electric defrost.

<table>
<thead>
<tr>
<th>Status</th>
<th>Compressor</th>
<th>Condenser Fans</th>
<th>Evaporator Fans</th>
<th>Defrost Heaters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Display alternates “OFF” and Room Temperature</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Automatic Defrost on start up</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>On</td>
<td>Defrost Sensor reaches 65° F and defrost is terminated</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Cooling cycle initiated - Drip Time</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Drip Time of 2 minutes ends - coil freeze begins</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Evaporator fans start after 2 min delay</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Box Temperature (-10.1° F) is satisfied</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Box Temperature rises to -8.0° F</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Defrost Initiated (Manually or 6 hour counter)</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>On</td>
<td>Cooling cycle initiated - Drip Time</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Drip Time of 2 minutes ends - coil freeze begins</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Evaporator fans start after 1 min delay</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>
TABLE 3: OUTDOOR MEDIUM TEMPERATURE MODELS-ELECTRIC DEFROST | EZY SETTING=2
SET POINT IS 35° F
These models are intended for cooler applications and have electric defrost. These models are intended for coolers that may be operated at a lower saturated suction temperature and require electric defrost to clear the coil.

<table>
<thead>
<tr>
<th>Status</th>
<th>Compressor</th>
<th>Condenser Fans</th>
<th>Evaporator Fans</th>
<th>Defrost Heaters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>If unit shows “OFF”, depress the “^” button and hold for three seconds.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>If coil temperature is below 65° F. If it is above, defrost is not initiated. Drip Time and Freeze Time are ignored.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>System Timer Begins/2 min drip time</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Compressor and evaporator fans start</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>2° F Differential, Minimum Compressor Off Time is 4 minutes</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Electric Defrost</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Compressor starts and evaporator fans delay for 1 minute to freeze coil</td>
</tr>
</tbody>
</table>

TABLE 4: OUTDOOR MEDIUM TEMPERATURE MODELS-AIR DEFROST | EZY SETTING=3
SET POINT IS 38° F
These models are intended for cooler applications and have air (Off-cycle) defrost. The controller is pre-programmed for 4 defrost per day. These periods are reprogrammable.

<table>
<thead>
<tr>
<th>Status</th>
<th>Compressor</th>
<th>Condenser Fans</th>
<th>Evaporator Fans</th>
<th>Defrost Cycle</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>If unit shows “OFF”, depress the “^” button and hold for three seconds.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>System Timer Begins</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>2° F Differential, Minimum Compressor Off Time is 4 minutes</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Air Defrost</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>
PROGRAMMING THE PJEZC CAREL ELECTRONIC CONTROLLER
Reprinted with permission from Carel.

The Carel PJEZC control is a fully configurable electronic refrigeration controller. The Top Mount packaged refrigeration system uses the Carel controller on all three temperature designated models. The models differ by a pre-programmed parameter list that is specific for each application.

There are two levels of programming with the C controller. The first level can be accessed through the keypad. Set Point (st), Interval between defrost (do), Maximum Defrost Duration (dP), and Dripping Time (dd) are examples of first level parameters. Second level parameters can be accessed by entering a password. See “Modifying Parameters” (page 17).

INSTALLATION AND REMOVAL

PANEL INSTALLATION FROM THE FRONT USING SCREWS

- The thickness of the fastening panel must not exceed 3 mm.
- Remove the front frame and make sure that the two catches are in place (these must not protrude from the outline of the drilling template). If necessary, unscrew the two screws. Do not unscrew excessively, the screws must not be detached from the front panel (phase 1).
- Insert the instrument in the opening in the panel and hold it in position by the centre of the front panel (phase 1).
- Using the screwdriver, tighten the bottom screw 90°, the catch must come out of its slot and click onto the panel, then tighten until the front panel is secure. Do not over-tighten, when the front panel is secured blocks simply make another ½ turn to compress the gasket; If the catch does not click onto the panel, unscrew the screw, applying pressure at the same time with the screwdriver so that the catch moves back. Do not unscrew too much, the head of the screw must not be raised from the surface of the front panel (phase 2).
- Repeat the same operation for the top screw (phase 2).
- Apply the front frame (phase 3).

DISMANTLING USING THE SCREWS FROM THE FRONT

- Unclip the front frame.
- Unscrew the bottom screw, at the moment the front panel detaches from the panel keep pressure on the screw and unscrew a further 90° to make the catch go back into its slot.
- Repeat for the top screw.
- Remove the instrument from panel, keeping it horizontal.

* Do not over-tighten the screws.
ELECTRICAL CONNECTIONS

WARNINGS:

The electrical connections must only be completed by a qualified electrician.

A power supply other than the type specified may seriously damage the system.

Separate as much as possible the probes and digital input signal cables from the cables carrying inductive loads and power cables to avoid possible electromagnetic disturbance. Never lay power cables (including the electrical cables) and probe signal cables in the same conduits. Do not install the probe cables in the immediate vicinity of power devices (contactors, circuit breakers or similar).

Reduce the path of the probe and sensor cables as much as possible, and avoid spiral paths that enclose power devices. The probes must be connected using shielded cables (minimum cross-section of each wire: 0.5 mm²).

Avoid direct contact with internal electronic components.

Connection errors (and connections other than those indicated in this manual) may involve danger to the safety of the users and cause faults on the instruments and the components connected.

Fit the unit with all the electromechanical safety devices required to guarantee correct operation and the complete safety of the user.

CONTROLLER WIRING

DISPLAY

<table>
<thead>
<tr>
<th>But. No.</th>
<th>Function</th>
<th>Normal Operation</th>
<th>Start up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>compressor</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>fan</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>3</td>
<td>defrost</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>4</td>
<td>auxiliary output (AUX)</td>
<td>output active</td>
<td>output not active</td>
</tr>
<tr>
<td>5</td>
<td>clock (RTC)</td>
<td>RTC available, enabled (tEN=1) and at least one time band has been set</td>
<td>RTC not available or not enabled (tEN=0) or no time band set</td>
</tr>
<tr>
<td>6</td>
<td>alarm</td>
<td>alarm in progress</td>
<td>no alarm in progress</td>
</tr>
<tr>
<td>7</td>
<td>digits</td>
<td>three digits with decimal point and range -199 to 999. See parameters /4, /5, /6 for the type of probe displayed, values in °C/°F and decimal point</td>
<td></td>
</tr>
</tbody>
</table>
Once the electrical connections have been completed, simply power-up the controller to make it operative. Heatcraft recommends that you check the parameters listed.

FUNCTIONS AVAILABLE FROM KEYPAD

ON AND OFF

Switching the instrument ON: press UP for more than 3 s (when pressing the button, the display shows ON).

Switching the instrument OFF: press UP for more than 3 s. The display shows the message “OFF”, alternating with the temperature measured by the set probe.

In off status, the following functions are disabled (if featured by the model):

- compressor control / duty setting / continuous cycle;
- defrost;
- fan control;
- door switch (A4= 7/8);
- buzzer (when available)

While the following are enabled:

- temperature display, alternating with the message “OFF”;
- parameter display and setting;
- alarms: “E0”, “E1”, “E2”;
- the internal timer relating to parameter ‘dl’ is updated. If ‘dl’ expires in OFF status, a defrost is performed when restarting;
- auxiliary relay management, only in the following configurations:
 - H1= = 1/2 (“E0” alarm only)
 - H1= 3, A4= 6;
WARNING:
When first connected, easy is already on and ready to be used. The instrument can be switched on from a supervisor PC and via an external contact (setting A4= 5). The latter has priority over the other modes.

SET POINT SETTING (DESIRED TEMPERATURE VALUE)
The easy and easy compact devices control the desired temperature (set point) inside the cabinet or cold room directly and dynamically.
To view and modify the set point:
- press SET for 1 s, the set value will start flashing.
- increase or decrease the value using UP or DOWN.
- press SET to confirm the new value.

MANUAL DEFROST
Press DOWN for more than 3 s (activated only if the temperature conditions are right).

CONTINUOUS CYCLE
Press UP+DOWN for more than 3 s (activated only if the temperature conditions are right).
The continuous cycle is used to maintain refrigeration active in the cabinet or cold room, regardless of the temperature inside the unit. This may be useful for rapidly bringing the temperature below the set point value.

RAPID DISPLAY OF THE TEMPERATURE READ BY THE OTHER PROBES
Press the DOWN button to scroll the temperatures read by the probes. Each time the DOWN button is pressed, the display will show the name of the probe Pr1, Pr2 or Pr3 (only on the models with 3 inputs and with multifunction input configured as a probe) and after 1 s the temperature measured by the selected probe will be displayed.
To display the other probes, press DOWN again.
To return to the normal display, wait 3 s without pressing any buttons (exit by timeout).

TEMPERATURE DISPLAY
The temperature displayed, the unit of measure and the decimal resolution can be set according to the following parameters: /4, /5 and /6.

/4: SELECT PROBE DISPLAYED
Used to choose whether to display the temperature read by the control probe (Probe 1), Probe 2 or the status of the multifunction input (analogue or digital).
Parameter /4 selects the probe shown on the display, all the other display and control modes remain unchanged.
IMPORTANT: the easy compact models can display up to 2 probes.

/5: SELECT °C°F
Defines the unit of measure used for temperature control.
/5=0 to work in °C
/5=1 to work in °F.

WARNING:
When changing from one unit of measure to the other, all the values of the temperature parameters are modified to the new unit of measure.
The max and min limits of the absolute temperature parameters are the same for both °C that °F. The range of temperatures allowed is therefore different between °C and °F:

/6: DISABLE DECIMAL POINT
Used to enable or disable the temperature display with the resolution to the tenths of a degree between -20 and + 20 (easy) or -10 and +10 (easy compact).
/6= 0 temperature displayed to the tenth of a degree;
/6=1 temperature displayed without the tenths of a degree.

NOTE: the decimal point is only disabled in relation to the reading shown on the display (the calculations performed by the controller remain unchanged).

TEMPERATURE CONTROL
The following parameters are used to control the temperature: St, r1, r2, r3, r4 and rd.

ST: SET POINT, R1 MINIMUM VALUE AND R2 MAXIMUM VALUE OF THE SET POINT
Parameter St determines the desired temperature to be maintained inside the cabinet or cold room (set point). Parameters r1 (minimum value) and r2 (maximum) set the range of temperatures for setting the set point.

NOTE: the set point can be set by pressing the SET button (see par. “Setting the set point (desired temperature value)” page 11).

R3: SELECT DIRECT/REVERSE OPERATION
Defines the operating mode of the device:
- r3=0: direct with defrost. Used to request the activation of the compressor when the temperature measured by probe 1 rises above the set point. This mode also includes defrost.
- r3=1: direct without defrost.
- r3=2: reverse without defrost. Used to request the activation of the compressor when the temperature measured by probe 1 falls below the set point. This mode does NOT include defrost.
RAPID PARAMETER SET SELECTION (EZY)

The easy controller features the EZY parameter which is used to quickly choose a list of parameters, with corresponding values, for the control of the refrigeration system.

TABLE OF ALARMS AND SIGNALS

When an alarm is activated, the display shows the corresponding message that flashes alternating with the temperature; if fitter and enabled, the buzzer and the alarm relay are also activated.

All the alarms have automatic reset (that is, they stop when the causes are no longer present), except for alarm 'CHt' which has manual reset (instrument on/off using the UP button or by disconnecting the power supply).

NOTE:

- To restore the selected rapid parameter set at any time, turn the controller off and on again, while holding SET. The display shows “CE” to indicate that the selected rapid set (EZY= 1, 2, 3) has again over written the operating parameters, thus restoring the original set of parameters.
- To restore all the parameters and return to the original default values (factory settings), turn the controller off and on again while holding DOWN and SET, until the display shows “CF”. Use this procedure with extreme care, as it may compromise the fundamental control settings.
- EZY= 0 brings no change

Pressing the SET button mutes the buzzer, while the code displayed and the alarm relay only go off when the causes of the alarm have been resolved. The alarm codes are shown in the able below:

<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Buzzer and Alarm Relay</th>
<th>LED</th>
<th>Alarm Description</th>
<th>Reset</th>
<th>Enable Alarm parameters involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>active</td>
<td>ON</td>
<td>probe 1 error= control</td>
<td>automatic</td>
<td>–</td>
</tr>
<tr>
<td>E1</td>
<td>not active</td>
<td>ON</td>
<td>probe 2 error= defrost</td>
<td>automatic</td>
<td>d0= 0 / 1 / 4, F0= 1</td>
</tr>
<tr>
<td>E2</td>
<td>not active</td>
<td>ON</td>
<td>probe 3 error= condenser/ product</td>
<td>automatic</td>
<td>[A4=10]</td>
</tr>
<tr>
<td>IA</td>
<td>active</td>
<td>ON</td>
<td>external alarm</td>
<td>automatic</td>
<td>[A4 = 1] [A7]</td>
</tr>
<tr>
<td>dOr</td>
<td>active</td>
<td>ON</td>
<td>open door alarm</td>
<td>automatic</td>
<td>[A4 = 7/8][A7]</td>
</tr>
<tr>
<td>LO</td>
<td>active</td>
<td>ON</td>
<td>low temperature alarm</td>
<td>automatic</td>
<td>[AL] [Ad]</td>
</tr>
<tr>
<td>HI</td>
<td>active</td>
<td>ON</td>
<td>high temperature alarm</td>
<td>automatic</td>
<td>[AH] [Ad]</td>
</tr>
<tr>
<td>EE</td>
<td>not active</td>
<td>ON</td>
<td>unit parameter error</td>
<td>not possible</td>
<td>–</td>
</tr>
<tr>
<td>EF</td>
<td>not active</td>
<td>ON</td>
<td>operating parameter error</td>
<td>manual</td>
<td>–</td>
</tr>
<tr>
<td>Ed</td>
<td>not active</td>
<td>ON</td>
<td>defrost ended by timeout</td>
<td>on first defrost ended correctly</td>
<td>[dP] [dt] [d4] [A8]</td>
</tr>
<tr>
<td>dF</td>
<td>not active</td>
<td>OFF</td>
<td>defrost running</td>
<td>automatic</td>
<td>[d6=0]</td>
</tr>
<tr>
<td>cht</td>
<td>not active</td>
<td>ON</td>
<td>dirty condenser pre-alarm</td>
<td>automatic</td>
<td>[A4=10]</td>
</tr>
<tr>
<td>CHt</td>
<td>active</td>
<td>ON</td>
<td>dirty condenser alarm</td>
<td>manual</td>
<td>[A4=10]</td>
</tr>
<tr>
<td>EtC</td>
<td>not active</td>
<td>ON</td>
<td>clock alarm</td>
<td>by setting the time</td>
<td>if bands active</td>
</tr>
</tbody>
</table>
DESCRIPTION OF THE MAIN SIGNALS AND ALARMS

LED FLASHING
The activation of the corresponding function is delayed by a timer, awaiting an external signal or disabled by another procedure that is already in progress. e.g. if is a continuous cycle in progress and a defrost is called, the latter will remain pending until the end of the continuous cycle, and the corresponding LED (defrost) will flash.

E0 STEADY OR FLASHING
Control probe error:
- Probe not working: the probe signal is interrupted or short-circuited;
- Probe not compatible with the instrument;
The alarm signal E0 is steady if it is the only active alarm (the temperature value is not displayed), while it flashes if other alarms are active or the second probe is displayed.

E1 FLASHING
Evaporator probe or food conservation probe error:
- Probe not working, the probe signal is interrupted or short-circuited;
- Probe not compatible with the instrument;

E2 FLASHING
Condenser probe or food conservation probe error:
- Probe not working, the probe signal is interrupted or short-circuited;
- Probe not compatible with the instrument;

IA FLASHING
Immediate or delayed alarm from multifunction digital input:
- Check the multifunction input and parameters A4 and A7.

LO FLASHING
Low temperature alarm. The probe has measured a temperature lower than the set point by a value that exceeds parameter AL:
- Check parameters AL, Ad and A0.
The alarm is automatically reset when the temperature returns within the set limits (see parameter AL).

HI FLASHING
High temperature alarm. The probe has measured a temperature higher than the set point by a value that exceeds parameter AH:
- Check parameters AH, Ad and A0.
The alarm is automatically reset when the temperature returns within the set limits (see parameter AH).

EE DISPLAYED DURING OPERATION OR ON POWER-UP
Unit parameter reading error. See Data errors.

EF DISPLAYED DURING OPERATION OR ON POWER-UP
Operating parameter reading error. See Data errors.

ED FLASHING
The last defrost ended after exceeding the maximum duration rather than when reaching the end defrost set point.
- Check parameters dt, dP and d4;
- Check the efficiency of the defrost.
The message disappears when the next defrost ends correctly.

DF FLASHING
Defrost running:
- This is not an alarm signal, but rather a message that the instrument is running a defrost. Only shown if d6= 0.

CHT FLASHING
Dirty condenser alarm:
- Check parameters A4, Ac, AE and Acd.

ETC FLASHING
Internal clock error.

DATA ERROR
In certain operating conditions, the instrument may detect errors in the data saved. These errors may compromise the correct operation of the instrument. If the microprocessor detects a data saving error, the display shows the message “EE”.
If the fault persists, the controller needs to be replaced. If, on the other hand, the message disappears, it can continue to be used. When “EE” error occurs frequently and/or remains for some time, the controller should be checked, as the original precision may not be guaranteed.
MODIFYING THE PARAMETERS
PARAMETER NAVIGATION
The operating parameters, modifiable using the keypad, are divided into two types: frequent (type F) and configuration (type C). Access to the latter is protected by password (default= 22) to prevent accidental or unauthorized modifications.

ACCESSING THE TYPE F PARAMETERS:
- Press the SET button for more than 3 s (if there are active alarms, mute the buzzer), the display shows the parameter code ‘PS’ (password).
- Use the UP and DOWN buttons to scroll the parameters. The LED corresponding to the category of parameters will be on.
- Press SET to display the value associated with the parameter increase or decrease the value using the UP or DOWN button respectively.
- Press SET to temporarily save the new value and display the parameter again.
- Repeat the procedure for any other parameters that need to be modified.
- Press the SET button for more than 3 s to permanently save the parameters and exit the parameter setting procedure.

ACCESSING THE TYPE C PARAMETERS:
- Press the SET button for more than 3 s (if there are active alarms, mute the buzzer), the display shows the parameter code “PS” (password).
- Press the SET button to access the password setting.
- Use the UP and DOWN buttons to scroll the numbers until displaying “22” (password to access the parameters).
- Press SET to confirm the password.
- Use the UP and DOWN buttons to scroll the parameters. The LED corresponding to the category of parameters will be on (see Table below).
- Press SET to display the value associated with the parameter increase or decrease the value using the UP or DOWN button respectively.
- Press SET to temporarily save the new value and display the parameter again.
- Repeat the procedure for any other parameters that need to be modified.
- Press the SET button for more than 3 s to permanently save the parameters and exit the parameter setting procedure.

WARNINGS:
If no button is pressed for 60 s, all the changes made to the parameters, temporarily saved in the RAM, will be canceled and the previous settings restored.
The Day, Hr, Min parameters are not restored, as these are saved instantly when entered.
If power is disconnected from the instrument before saving the settings (pressing the SET button for 3 s), all the changes made to the parameters and temporarily saved will be lost.

<table>
<thead>
<tr>
<th>Category</th>
<th>Initial</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe parameters</td>
<td>f</td>
<td>-</td>
</tr>
<tr>
<td>Control parameters</td>
<td>r</td>
<td>-</td>
</tr>
<tr>
<td>Compressor parameters</td>
<td>c</td>
<td>⚫</td>
</tr>
<tr>
<td>Defrost parameters</td>
<td>d</td>
<td>⚫</td>
</tr>
<tr>
<td>Alarm parameters</td>
<td>A</td>
<td>⚫</td>
</tr>
<tr>
<td>Fan parameters</td>
<td>F</td>
<td>⚫</td>
</tr>
<tr>
<td>AUX output configuration parameters</td>
<td>H1</td>
<td>AUX</td>
</tr>
<tr>
<td>RTC parameters</td>
<td>-</td>
<td>⚫</td>
</tr>
</tbody>
</table>

SETTING THE DEFAULT PARAMETERS
WARNINGS:
Running this procedure overwrites any custom parameter settings.
To reset the default parameters:
- Disconnect power from the instrument.
- Reconnect power while holding the SET and DOWN buttons.
- The display will show the message “CF”.
- After a few seconds the instrument starts operating with the default configuration. Any different parameter settings will need to be updated.
TROUBLESHOOTING

The following table shows a number of situations that may occur on the various models.

The most frequent causes and corresponding checks are described:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Checks</th>
</tr>
</thead>
</table>
| the compressor does not start (signaled by the compressor LED flashing) | • compressor delay set defrost post
• dripping in progress | parameters c0, c1 and c2 and dd |
| the temperature is over the set limits but there is no alarm message and the buzzer, if fitted, does not sound | alarm delay set | parameters Ad, c6, d8 |
| alarm IA is signaled (multifunction input) without actually being active | the multifunction input generates an alarm when the contact opens | connection of the input and whether this is closed in normal operation |
| the alarm connected to the multifunction input is not detected | alarm delay set or parameter programming error | 1. if A4=1
2. the status of digital input A7 |
| the defrost is not activated | defrost duration too short (dP)
interval between defrosts di=0: in this case the defrost is not activated | parameters dP and di |
| the manual defrost is not activated and the defrost LED flashes | the end defrost temperature is too low or the evaporator temperature is too high | parameters dt and d/ (defrost probe) |
| the high temperature alarm is shown after a defrost | the alarm delay after defrost is too short or the alarm threshold is too low | parameters d8 and AH |
| the display remains frozen even after the defrost | the ambient temperature has not yet reached the set point or alternatively the time d8 has not elapsed | wait or reduce d8 |
| after modifying a parameter the controller continues working with the old values | the instrument has not updated the old value or alternatively the parameter setting procedure has not been ended correctly by pressing the SET button for 3 s | turn the instrument off and on again or alternatively reprogram the parameters correctly |
| the evaporator fan does not start | 1. a compressor and fan start delay has been set
2. if F0=1 (fan managed by fan controller)
• the evaporator is “hot”: the evaporator temperature can be read by selecting parameter /d
• dripping in progress
• F1 (evaporator fan control set point) too low
• post-dripping delay set
3. if F0=0
• F2=1 and the compressor is off
• dripping in progress
• post-dripping in progress | 1. parameter c0
2. parameters F0, F1, Fd, dd and d/
3. parameters F0, F2, dd and Fd |
DEVICE SETUP

Set 1 - Low Temperature Models - Electric Defrost w/ -10° F Set

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>Set point</td>
<td>-30</td>
<td>30</td>
<td>-10</td>
</tr>
<tr>
<td>r1</td>
<td>Minimum set point value</td>
<td>-50</td>
<td>303</td>
<td>-30</td>
</tr>
<tr>
<td>r2</td>
<td>Maximum set point value</td>
<td>-30</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>c2</td>
<td>Minimum compressor off time</td>
<td>0</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>do</td>
<td>Type of Defrost</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>dl</td>
<td>Interval between defrost</td>
<td>0</td>
<td>199</td>
<td>6</td>
</tr>
<tr>
<td>dt</td>
<td>End defrost temperature set point</td>
<td>-50</td>
<td>127</td>
<td>65</td>
</tr>
<tr>
<td>dP</td>
<td>Maximum defrost duration ALARM_ED</td>
<td>1</td>
<td>199</td>
<td>40</td>
</tr>
<tr>
<td>d4</td>
<td>Defrost on power-up</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>dd</td>
<td>Dripping time</td>
<td>0</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>F0</td>
<td>Enable evaporator fan control</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>Stop evaporator fan if compressor off</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F3</td>
<td>Evaporator fan status during defrost</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fd</td>
<td>Post-dripping time</td>
<td>0</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Set 2 - Medium Temperature Models - Electric Defrost w/ 35° F Set Point

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>Set point</td>
<td>0</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>r1</td>
<td>Minimum set point value</td>
<td>-50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>r2</td>
<td>Maximum set point value</td>
<td>0</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>c2</td>
<td>Minimum compressor off time</td>
<td>0</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>do</td>
<td>Type of Defrost</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>dl</td>
<td>Interval between defrost</td>
<td>0</td>
<td>199</td>
<td>6</td>
</tr>
<tr>
<td>dt</td>
<td>End defrost temperature set point</td>
<td>-50</td>
<td>127</td>
<td>65</td>
</tr>
<tr>
<td>dP</td>
<td>Maximum defrost duration ALARM_ED</td>
<td>1</td>
<td>199</td>
<td>40</td>
</tr>
<tr>
<td>d4</td>
<td>Defrost on power-up</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>dd</td>
<td>Dripping time</td>
<td>0</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>F0</td>
<td>Enable evaporator fan control</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>Stop evaporator fan if compressor off</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F3</td>
<td>Evaporator fan status during defrost</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fd</td>
<td>Post-dripping time</td>
<td>0</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Set 3 - Medium Temperature Models - Air Defrost w/ 38° F Set Point

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>Set point</td>
<td>0</td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>r1</td>
<td>Minimum set point value</td>
<td>-50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>r2</td>
<td>Maximum set point value</td>
<td>0</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>c2</td>
<td>Minimum compressor off time</td>
<td>0</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>do</td>
<td>Type of Defrost</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>dl</td>
<td>Interval between defrost</td>
<td>0</td>
<td>199</td>
<td>6</td>
</tr>
<tr>
<td>dt</td>
<td>End defrost temperature set point</td>
<td>-50</td>
<td>127</td>
<td>40</td>
</tr>
<tr>
<td>dP</td>
<td>Maximum defrost duration ALARM_ED</td>
<td>1</td>
<td>199</td>
<td>40</td>
</tr>
<tr>
<td>d4</td>
<td>Defrost on power-up</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>dd</td>
<td>Dripping time</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>F0</td>
<td>Enable evaporator fan control</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F2</td>
<td>Stop evaporator fan if compressor off</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F3</td>
<td>Evaporator fan status during defrost</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fd</td>
<td>Post-dripping time</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
PRO³ System Troubleshooting Chart

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSES</th>
<th>POSSIBLE CORRECTIVE STEPS</th>
</tr>
</thead>
</table>
| Compressor will not run | 1. Main switch open.
2. Fuse blown.
3. Thermal overloads tripped.
4. Defective contactor or coil.
5. System shut down by safety devices.
6. No cooling required.
7. Motor electrical trouble.
2. Check electrical circuits and motor winding for shorts or grounds. Investigate for possible overloading. Replace fuse after fault is corrected.
3. Overloads are automatically reset. Check unit closely when unit comes back on line.
4. Repair or replace.
5. Determine type and cause of shutdown and correct it before resetting safety switch.
6. None. Wait until calls for cooling.
7. Check motor for open windings, short circuit or burn out.
8. Check all wire junctions. Tighten all terminal screws. |
| Compressor noisy or vibrating | 1. Flooding of refrigerant into crankcase.
2. Worn compressor. | 1. Check setting of expansion valves.
2. Replace. |
| High discharge pressure | 1. Non-condensables in system.
2. Fan not running.
3. Dirty condenser coil.
4. System overcharged with refrigerant. | 1. Remove the non-condensables.
2. Check electrical circuit. Replace if motor fails.
3. Clean.
4. Reclaim refrigerant and recharge proper amount. |
| Low discharge pressure | 1. Insufficient refrigerant in system.
2. Low suction pressure. | 1. Check for leaks. Repair and add charge.
2. See corrective steps for low suction pressure. |
| High suction pressure | 1. Excessive load.
2. Expansion valve overfeeding. | 1. Reduce load or add additional equipment.
2. Check remote bulb. Regulate superheat. |
| Low suction pressure | 1. Lack of refrigerant.
2. Evaporator dirty or iced.
3. Expansion valve malfunctioning.
2. Clean.
3. Check and reset for proper superheat.
4. Check ambient temperature 50°F to 100°F. |
| Compressor thermal protector switch open | 1. Operating beyond design conditions.
2. Dirty condenser coil.
3. Overcharged system. | 1. Add equipment so that conditions are within allowable limits.
2. Clean coil.
3. Reduce charge. |
| Fan(s) will not operate | 1. Main switch open.
2. Blown fuses.
3. Defective motor.
4. Defective defrost control.
5. Unit in defrost cycle.
6. Coil does not get cold enough to reset thermostat. | 1. Close switch.
2. Replace fuses. Check for short circuits or overload conditions.
3. Replace motor.
4. Replace defective component.
5. Wait for completion of cycle.
6. Adjust fan delay setting of control. |
| Room temperature too high | 1. Control cut out set too high.
2. Superheat too high.
3. System low on refrigerant.
2. Adjust thermal expansion valve.
3. Add refrigerant.
| Ice accumulating on ceiling around evaporator and/or on fan guards’ venturi or blades | 1. Defrost duration is too long.
2. Fan delay not delaying fans after defrost period.
3. Defective defrost control or sensor.
4. Too many defrosts. | 1. Adjust defrost termination temperature on control.
2. Adjust fan delay setting or replace bad sensor.
3. Replace defective control or sensor.
4. Adjust number of defrosts. |
| Coil not clearing of frost during defrost cycle. | 1. Coil temperature not getting above freezing point during defrost.
2. Not enough defrost cycles per day.
3. Defrost cycle too short.
4. Defective defrost control or sensor. | 1. Check heater operation.
2. Adjust control for more defrost cycles.
3. Adjust defrost control, defrost duration setting.
4. Replace defective component. |
| Ice accumulating in drain pan | 1. Defective heater.
2. Unit not installed properly (out of level).
3. Drain line plugged.
4. Defective control. | 1. Replace heater.
2. Check and adjust if necessary.
3. Clean drain line.
4. Replace defective component. |
REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Cabinet, Voltage/Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1, 115/1</td>
</tr>
<tr>
<td>Motor - Condenser</td>
<td>25308501</td>
</tr>
<tr>
<td>Motor - Evaporator</td>
<td>25319301</td>
</tr>
<tr>
<td>Fan blade - Condenser</td>
<td>22900601</td>
</tr>
<tr>
<td>Fan blade - Evaporator</td>
<td>23100501</td>
</tr>
<tr>
<td>Motor Mount - Condenser</td>
<td>23101101</td>
</tr>
<tr>
<td>Motor Mount - Evaporator</td>
<td>23101401</td>
</tr>
<tr>
<td>Contactor</td>
<td>2252303</td>
</tr>
<tr>
<td>Temperature Controller</td>
<td>21301101</td>
</tr>
<tr>
<td>Room Temp Sensor</td>
<td>28913702</td>
</tr>
<tr>
<td>Defrost Temp Sensor</td>
<td>28913701</td>
</tr>
<tr>
<td>Heater Limit Thermostat</td>
<td>5708L</td>
</tr>
<tr>
<td>Defrost Heaters</td>
<td>24751901</td>
</tr>
<tr>
<td>Fan Pressure Control</td>
<td>N/A</td>
</tr>
<tr>
<td>Fan Temp Control</td>
<td>N/A</td>
</tr>
<tr>
<td>Drain Line Heater</td>
<td>N/A</td>
</tr>
<tr>
<td>Drain Line Heater T'stat</td>
<td>N/A</td>
</tr>
<tr>
<td>Weather hood</td>
<td>N/A</td>
</tr>
</tbody>
</table>

InterLink™ is your link to a complete line of dependable and certified commercial refrigeration parts, accessories and innovative electronic controls for all equipment. At InterLink, we provide our wholesalers with a comprehensive selection of product solutions and innovative technologies for the installed customer base. And every product is built to ensure the same high performance standards with which all Heatcraft Refrigeration Products brands are built — backed by a dedicated team to serve every customer need, delivering at the best lead times in the industry.

Dependable. Versatile. Courteous.

Finally, one simple source for all your replacement needs from a name you can trust.
ELECTRICAL WIRING DIAGRAMS

ELECTRIC DEFROST SYSTEMS - SINGLE PHASE - P2 CABINET

使用铜电缆

使用铜导线

208-230V/1ø/60HZ

Refrigeration controller by Carel

Model: PT0042LBTEMSA
Serial: 7704655608

Customer:

Rev: 3.71

Legend:
- CC: Compressor contactor
- CCH: Crankcase heater
- CFM: Condenser fan motor
- DFH: Defrost heater
- HL: Heater limit thermostat
- DLH: Drain line heater
- RT: Room thermostat
- HPS: High pressure switch
- EFM: Evaporator fan motor
- PFC: Pressure fan cycle switch
- SR: Start relay
- GND: Ground
- RC: Run capacitor
- SW: Switch
- RELAY: Relay
- WB: Wire nut
- T1, L1, T2, L2: Terminals

Factory wiring (when plug provided)

Field wiring

Primary single phase protection provided

Use copper conductors only
ELECTRICAL WIRING DIAGRAMS

ELECTRIC DEFROST SYSTEMS - SINGLE PHASE - P3 CABINET

LEGEND

- CC -- COMPRESSOR CONTACTOR
- DLH -- DRAIN LINE HEATER
- HL -- HEATER LIMIT THERMOSTAT
- RT -- ROOM THERMOSTAT
- TFC -- TEMPERATURE FAN CYCLE SWITCH
- SW -- SWITCH

- CCH -- CRANKCASE HEATER
- CFM -- CONDENSER FAN MOTOR
- EFM -- EVAPORATOR FAN MOTOR
- PFC -- PRESSURE FAN CYCLE SWITCH
- RC -- RUN CAPACITOR

- DLT -- DRAIN LINE THERMOSTAT
- DLH -- DRAIN LINE HEATER
- GND -- GROUND
- RC -- RUN CAPACITOR
- SC -- START CAPACITOR
- SR -- START RELAY
- SW -- SWITCH

USE COPPER CONDUCTORS ONLY

FACTORY WIRING
FIELD WIRING
(WHEN PLUG PROVIDED)

208-230V/1ø/60HZ

Refrigeration Controller
by Carel

Model: PT097MBTEMSA
Serial: 446256867

Customer:

Rev 3.71
ELECTRICAL WIRING DIAGRAMS

ELECTRIC DEFROST SYSTEMS - THREE PHASE - P3 CABINET

- RT -- ROOM THERMOSTAT
- CFM -- CONDENSER FAN MOTOR
- CC -- COMPRESSOR CONTACTOR
- EFM -- EVAPORATOR FAN MOTOR
- HL -- HEATER LIMIT THERMOSTAT
- DH -- DEFROST HEATER
- FCM -- CRANKCASE HEATER
- CFM -- CONDENSER FAN MOTOR
- DLT -- DRAIN LINE THERMOSTAT
- DLT -- DRAIN LINE THERMOSTAT
- PFC -- PRESSURE FAN CYCLE SWITCH
- RB -- RELAY R1
- TBC -- THERMOSTAT BACKUP
- TB1 -- THERMOSTAT BACKUP
- CN -- CONTACTOR
- SB -- START RELAY
- SC -- START CAPACITOR
- RC -- RUN CAPACITOR
- WN -- WIRE NUT
- SW -- SWITCH

208-230V/3ø/60HZ

REFRIGERATION CONTROLLER
by Carel

Model: PT0069LCTE5MA
Serial: 2293887854

Use Copper Conductors Only

Use Copper Conductors Only

Primary Single Phase Protection Provided

Field Wiring (When Plug Provided)

Factory Wiring

Legend

- BLUE
- BLACK
- WHITE
- RED
- GRAY
- ORANGE
- YELLOW
- BROWN
- GREEN

208-230V/3ø/60HZ

03 TOP MOUNT PACKAGED REFRIGERATION SYSTEM

26
WARRANTY STATEMENT

Heatcraft Refrigeration Products LLC warrants to its direct purchasers that the PRO3 product, except Service Parts, manufactured by Heatcraft Refrigeration Products LLC shall be of a merchantable quality, free of defects in material or workmanship, under normal use and service for a period of two (2) years from date of original installation, or thirty (30) months from date of shipment by Heatcraft Refrigeration Products LLC, whichever first occurs. Service Parts, for product out of original warranty, should be so warranted for a period of twelve (12) months from date of shipment. Any product covered by this order found to Heatcraft Refrigeration Products LLC’s satisfaction to be defective upon examination at Heatcraft Refrigeration Products LLC’s factory will, at Heatcraft Refrigeration Products LLC’s option, be repaired or replaced and returned to Buyer via lowest common carrier, or Heatcraft Refrigeration Products LLC may at its option grant Buyer a credit for the purchase price of the defective article. Upon return of a defective product to Heatcraft Refrigeration Products LLC’s plant, freight prepaid, by Buyer, correction of such defect by repair or replacement, and return freight via lowest common carrier, shall constitute full performance by Heatcraft Refrigeration Products LLC of its obligations hereunder.

Hermetic compressors furnished by Heatcraft Refrigeration Products LLC are subject to the standard warranty terms set forth above, except that motor compressor replacements or exchanges shall be made through the nearest authorized wholesaler of the motor compressor manufacturer (not at Heatcraft Refrigeration Products LLC’s factory) and no freight shall be allowed for transportation of the motor compressor to and from the wholesaler. The replacement motor compressor shall be identical to the model of the motor compressor being replaced. Additional charges which may be incurred throughout the substitution of other than identical replacements are not covered by this warranty.

The foregoing is in lieu of all other warranties, express or implied, notwithstanding the provisions of the uniform commercial code, the Magnuson-Moss Warranty-Federal Trade Commission Improvement Act, or any other statutory or common law, federal or state.

Heatcraft Refrigeration Products LLC makes no warranty expressed or implied, of fitness for any particular purpose, or of any other nature whatsoever, with respect to products manufactured or sold by Heatcraft Refrigeration Products LLC hereunder, except as specifically set forth above and on the face hereof. It is expressly understood and agreed that Heatcraft Refrigeration Products LLC shall not be liable to buyer, or any customer of Buyer, for direct or indirect, special, incidental, consequential or penal damages, or for any expenses incurred by reason of the use or misuse by Buyer or third parties of said products. To the extent said products may be considered “Consumer Products,” as defined in Section 101 of the Magnuson-Moss warranty-Federal Trade Commission Improvement Act, Heatcraft Refrigeration Products LLC makes no warranty of any kind, express or implied, to “Consumers,” except as specifically set forth above and on the face hereof.

This equipment is designed to operate properly and produce the rated capacity when installed in accordance with good refrigeration industry practices.

The following conditions should be adhered to when installing this unit to maintain the manufacturers warranty:

(a) The power supply to the unit must meet the following conditions:

A. Three phase voltages must be +/- 10% of nameplate ratings. Single phase must be within +10% or -5% of nameplate ratings.

B. Phase imbalance cannot exceed 2%.

(b) All control and safety switch circuits must be properly connected according to the wiring diagram.

(c) The factory installed wiring must not be changed without written factory approval.

OPTIONAL THREE-YEAR EXTENDED COMPRESSOR WARRANTY

The Equipment Dealer may purchase for the Owner at the time of the original invoice of the equipment a Three-Year Limited Replacement Compressor Warranty. This entitles the owner to be reimbursed for the cost of a replacement compressor, during the third through fifth year of the life of the compressor.

The warranty program functions similarly to the standard warranty offered. When a compressor failure occurs and the unit is exchanged “over the counter” at the authorized wholesaler outlet a salvage credit is issued along with the invoice for the new compressor. Return copies of both the credit and invoice to the Equipment Dealer along with the model and serial number of the condensing unit. The Equipment Dealer will process this claim with the Manufacturer and subsequently reimburse the Owner for the cost of the new compressor.

This warranty covers the actual compressor only and does not extend to any labor, trip charges, crane rental, taxes or additional parts, refrigerant or processing/handling charges required to make the unit operational.